Copied to
clipboard

G = C62:5D4order 288 = 25·32

2nd semidirect product of C62 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial

Aliases: C62:5D4, C62.119C23, (S3xC6):16D4, (C2xC6):11D12, C23.27S32, D6:8(C3:D4), (S3xC23):5S3, (C2xDic3):4D6, C6.171(S3xD4), C6.86(C2xD12), C32:5C22wrC2, C3:5(D6:D4), D6:Dic3:17C2, C3:1(C24:4S3), C6.D4:13S3, (C6xDic3):3C22, (C22xS3).70D6, (C22xC6).119D6, C22:4(C3:D12), (C2xC62).38C22, (S3xC22xC6):2C2, (C2xC6):5(C3:D4), C2.43(S3xC3:D4), C6.23(C2xC3:D4), C22.142(C2xS32), (C3xC6).165(C2xD4), (C2xC32:7D4):3C2, (S3xC2xC6).85C22, (C2xC3:D12):11C2, (C3xC6.D4):9C2, C2.24(C2xC3:D12), (C22xC3:S3):2C22, (C2xC3:Dic3):5C22, (C2xC6).138(C22xS3), SmallGroup(288,625)

Series: Derived Chief Lower central Upper central

C1C62 — C62:5D4
C1C3C32C3xC6C62S3xC2xC6C2xC3:D12 — C62:5D4
C32C62 — C62:5D4
C1C22C23

Generators and relations for C62:5D4
 G = < a,b,c,d | a6=b6=c4=d2=1, ab=ba, cac-1=dad=a-1b3, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 1186 in 287 conjugacy classes, 60 normal (24 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2xC4, D4, C23, C23, C32, Dic3, C12, D6, D6, C2xC6, C2xC6, C2xC6, C22:C4, C2xD4, C24, C3xS3, C3:S3, C3xC6, C3xC6, C3xC6, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C22xS3, C22xS3, C22xC6, C22xC6, C22wrC2, C3xDic3, C3:Dic3, S3xC6, S3xC6, C2xC3:S3, C62, C62, C62, D6:C4, C6.D4, C6.D4, C3xC22:C4, C2xD12, C2xC3:D4, S3xC23, C23xC6, C3:D12, C6xDic3, C2xC3:Dic3, C32:7D4, S3xC2xC6, S3xC2xC6, C22xC3:S3, C2xC62, D6:D4, C24:4S3, D6:Dic3, C3xC6.D4, C2xC3:D12, C2xC32:7D4, S3xC22xC6, C62:5D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, D12, C3:D4, C22xS3, C22wrC2, S32, C2xD12, S3xD4, C2xC3:D4, C3:D12, C2xS32, D6:D4, C24:4S3, C2xC3:D12, S3xC3:D4, C62:5D4

Smallest permutation representation of C62:5D4
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 31 3 33 5 35)(2 32 4 34 6 36)(7 14 9 16 11 18)(8 15 10 17 12 13)(19 40 23 38 21 42)(20 41 24 39 22 37)(25 46 29 44 27 48)(26 47 30 45 28 43)
(1 47 10 19)(2 27 11 37)(3 45 12 23)(4 25 7 41)(5 43 8 21)(6 29 9 39)(13 38 33 28)(14 24 34 46)(15 42 35 26)(16 22 36 44)(17 40 31 30)(18 20 32 48)
(1 10)(2 18)(3 8)(4 16)(5 12)(6 14)(7 36)(9 34)(11 32)(13 33)(15 31)(17 35)(20 37)(21 23)(22 41)(24 39)(25 44)(26 30)(27 48)(29 46)(40 42)(43 45)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,31,3,33,5,35)(2,32,4,34,6,36)(7,14,9,16,11,18)(8,15,10,17,12,13)(19,40,23,38,21,42)(20,41,24,39,22,37)(25,46,29,44,27,48)(26,47,30,45,28,43), (1,47,10,19)(2,27,11,37)(3,45,12,23)(4,25,7,41)(5,43,8,21)(6,29,9,39)(13,38,33,28)(14,24,34,46)(15,42,35,26)(16,22,36,44)(17,40,31,30)(18,20,32,48), (1,10)(2,18)(3,8)(4,16)(5,12)(6,14)(7,36)(9,34)(11,32)(13,33)(15,31)(17,35)(20,37)(21,23)(22,41)(24,39)(25,44)(26,30)(27,48)(29,46)(40,42)(43,45)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,31,3,33,5,35)(2,32,4,34,6,36)(7,14,9,16,11,18)(8,15,10,17,12,13)(19,40,23,38,21,42)(20,41,24,39,22,37)(25,46,29,44,27,48)(26,47,30,45,28,43), (1,47,10,19)(2,27,11,37)(3,45,12,23)(4,25,7,41)(5,43,8,21)(6,29,9,39)(13,38,33,28)(14,24,34,46)(15,42,35,26)(16,22,36,44)(17,40,31,30)(18,20,32,48), (1,10)(2,18)(3,8)(4,16)(5,12)(6,14)(7,36)(9,34)(11,32)(13,33)(15,31)(17,35)(20,37)(21,23)(22,41)(24,39)(25,44)(26,30)(27,48)(29,46)(40,42)(43,45) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,31,3,33,5,35),(2,32,4,34,6,36),(7,14,9,16,11,18),(8,15,10,17,12,13),(19,40,23,38,21,42),(20,41,24,39,22,37),(25,46,29,44,27,48),(26,47,30,45,28,43)], [(1,47,10,19),(2,27,11,37),(3,45,12,23),(4,25,7,41),(5,43,8,21),(6,29,9,39),(13,38,33,28),(14,24,34,46),(15,42,35,26),(16,22,36,44),(17,40,31,30),(18,20,32,48)], [(1,10),(2,18),(3,8),(4,16),(5,12),(6,14),(7,36),(9,34),(11,32),(13,33),(15,31),(17,35),(20,37),(21,23),(22,41),(24,39),(25,44),(26,30),(27,48),(29,46),(40,42),(43,45)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J3A3B3C4A4B4C6A···6J6K···6S6T···6AA12A12B12C12D
order122222222223334446···66···66···612121212
size1111226666362241212362···24···46···612121212

48 irreducible representations

dim111111222222222244444
type++++++++++++++++++
imageC1C2C2C2C2C2S3S3D4D4D6D6D6C3:D4D12C3:D4S32S3xD4C3:D12C2xS32S3xC3:D4
kernelC62:5D4D6:Dic3C3xC6.D4C2xC3:D12C2xC32:7D4S3xC22xC6C6.D4S3xC23S3xC6C62C2xDic3C22xS3C22xC6D6C2xC6C2xC6C23C6C22C22C2
# reps121211114222284412214

Matrix representation of C62:5D4 in GL8(Z)

0-1000000
-10000000
00100000
00010000
00001000
00000100
000000-11
000000-10
,
-10000000
0-1000000
00100000
00010000
0000-1100
0000-1000
00000010
00000001
,
0-1000000
10000000
00-1-20000
00110000
0000-1000
00000-100
00000001
00000010
,
-10000000
01000000
00-100000
00110000
00000100
00001000
00000001
00000010

G:=sub<GL(8,Integers())| [0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,1,0],[-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-2,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;

C62:5D4 in GAP, Magma, Sage, TeX

C_6^2\rtimes_5D_4
% in TeX

G:=Group("C6^2:5D4");
// GroupNames label

G:=SmallGroup(288,625);
// by ID

G=gap.SmallGroup(288,625);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,64,219,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=c^4=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1*b^3,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<